Skip to content Skip to sidebar Skip to footer

Increased damaged fibers (echo-type III and IV) of both tendons were found among the control group, yet not among soldiers who performed prevention exercises.

Authors

Silvia Ortega Cebrian, Ramon Navarro, Sergi Seda, Sebastià Salas

Publisher

International Journal of Environmental Research and Public Health (IJERPH) Nov. 2021 18(22):12156

Publishing detail

PMID: 34831912

Abstract

Background: While there is evidence that tendon adapts to training load, structural alterations in the patellar tendon in response to training loads are still unclear. The aim of this study is to identify changes in patellar tendon structure throughout pre-season and after finalizing the first competitive cycle.

Methods: Nineteen professional handball players participated in the aforesaid cross-sectional study, in which patellar tendon scan and counter movement jump (CMJ) performance were conducted. Measurements were taken on the first and last day of pre-season training, and at the end of the first competitive cycle.

Results: The results revealed that variation on the tendon structure occurred, mainly at the end of pre-season training; for injured tendons this occurred at the proximal (Right p = 0.02), distal (Right p = 0.01), and (Left p = 0.02) tendon, while changes in healthy tendons occurred at the mid (Left p = 0.01) and distal tendon (Right p = 0.01). At the end of the first competitive cycle, changes were observed in the distal injured tendon (p = 0.02).

Conclusion: Patellar tendon shows greater structural change after completing pre-season training than at the end of the first competitive cycle, from which it may be inferred that gradual loading during pre-season training allows the tendon to adapt and potentially decrease the onset of patellar tendinopathy.

Go to Top